

A PLATFORM FOR INNOVATION

OVERVIEW

TOPCODER COMMUNITY CAPABILITIES

Rank and Winning Percentage by Discipline Across the World

THE PLATFORM INTEGRATES IDEAS, PROCESS AND PRODUCTS

NASA TOURNAMENT LAB ENGAGEMENT: OUTCOMES

[Algorithm Challenges]

Centered on difficult algorithmic problems like image processing, data compression, prediction. E.g. does not produce widgets.

- :: Competitors try to beat each other's scores in direct, real-time competition, sending in updates frequently.
- :: Typically 2 week contests.

[Software Challenges]

Centered on software development – databases, applications, websites, mobile apps, widgets. Is often "fronted" by open innovation contests.

- :: Competitors submit once, at the end of the contest.
- :: Submissions are scored on scorecards. Highest score wins.
- :: Typically 2 week contests.

[Algorithm Challenges]

Open calls for great ideas. Stakeholders select winning submissions.

:: Many ideas can receive a "bounty", or one submission can win.

TOPCODER ALGORITHM CHALLENGE OUTCOMES

HARVARD MEDICAL SCHOOL: SEQUENCE ALIGNMENT

- » Target was a tool that calculates the edit distance between a query DNA string and the original DNA string
- » Query string is subject to random additions, deletions and mutations
- » Number of permutations made it unreasonable to try them all
- » Goal was to design heuristics to allow for as many sequence evaluations as possible within a time limit

Problem Details:

Siven three strings of DNA sequences, A, B, C, and "query string" Q, the task is to, for each query string q, "recover" three strings a, b, and c (belonging to A, B, and C) which form a concatenation a+b+c as close as possible to q. Algorithms are scored based on edit distance achieved and computation time, with an emphasis on the former.

HARVARD MEDICAL SCHOOL: SEQUENCE ALIGNMENT

Harvard's Challenge

- Target was a tool that calculates the edit distance between a query DNA string and the original DNA string
- Real-world problem, where the limitations of existing tools severely constrain the ability to pioneer new advances in medical knowledge
- Best known solution, MegaBLAST, processed
 100,000 sequences to a high degree of accuracy,
 yet requiring minutes— Red dot on Graph

TopCoder Challenge

The numbers

- \$6,000 in total prize money
- 733 registrants
- 122 members submitted working solutions
- 654 total solutions submitted average of 5.4 per person
- Participants spent average of 22 hours working on the problem
- Total of **2,500 hours** of development effort over **2 weeks**

TopCoder Outcome

- Winning solution in the competition performs hundreds of times faster with a higher degree of accuracy – Green dots on Graph
- Fulltime Resource working for a year, average salary of \$120K - Yellow dot on Graph

Score vs. speed 1e5 sequences

NASA TOURNAMENT LAB: MEDICAL KITS... IN SPACE

- Given potential medical supplies construct an optimal medical kit
 - Minimize the risk of mission evacuation from a bad health outcome
 - Minimize both weight and volume
 - Each medical supply has additional properties to consider
 - Reusability
 - Effectiveness on range of possible medical events and conditions

- NASA provided simulated medical event data from previous research
- Allowed for accurate evaluation of computed medical kits

NASA TOURNAMENT LAB: MEDICAL KITS... IN SPACE

- Competition ran for 10 days
- 439 total contest participants
- 5,994 code submissions
- Cash prizes and 6 VIP Shuttle launch passes given out
- Winning solution performs kit optimization in 30 seconds, compared to 3 hours for NASA's previous best known solution (*360X*) improvement.
- NASA researchers "blown away" with the results
- Winning algorithm "works like a dream" in its use to redesign the medical kits used in space missions.

NASA TOURNAMENT LAB: PIPELINE THREAT RECOGNITION

- Detection and classification of objects in aerial images
- Algorithmically identify aerial images that contain potential pipeline "threats"
- Each image needs to be tagged with a threat confidence level
- Solutions must efficiently process tens of thousands of raw images

- Planetary satellite imagery classification
- Mars Reconnaissance Orbiter project
- Federal disaster response and recovery
- Processing remote sensing satellite data

NASA TOURNAMENT LAB: PIPELINE THREAT RECOGNITION

- Competition lasted three weeks
- 1,478 members registered to participate
- 549 total code submissions were performed

- NASA was very impressed with the top submissions which used "state of the art computer vision approaches"
- NASA identified 3 novel and distinct algorithmic techniques across the various top performers
- Active testing and integration of new ideas and techniques

NASA TOURNAMENT LAB: CRATER DETECTION

- Algorithmic detection of impact craters in lunar orbital images
- •More **effectively process** the ever increasing amounts of **orbital imagery** of the Moon, Mars and other planetary bodies
- Competitor solutions provide coordinates of detected craters

•Potential Research Benefits:

- Planet formation and geology studies
- Align disparate data sets (radar, laser altimetry, etc.)
- Lander/Rover navigation planning

NASA TOURNAMENT LAB: CRATER DETECTION

- Two week long competition
- •\$10,000 in total prizes
- •1,174 competition registrants
- •310 unique submitters
- •8.63 submissions (on average) per competitor
- Integration of final results into NASA framework is in-progress
- Winning algorithms to be shared with *Moon* Zoo project a crowd-sourced Lunar imagery classification project

NASA TOURNAMENT LAB: USPTO PATENT LABELING

• The Patent and Trademark Office has a huge volume of Patents that must be reviewed

 Knowing how some labels on a drawing relate to the patent text is important (the goal is to create hyperlinks)

- Each patent contains different handwriting or font type
- Varied fonts makes it difficult to distinguish between the patent pieces
- TopCoder ran an image processing contest, with success of 70% of the theoretical ideal answer
- USPTO was very satisfied with the result, and we're running a follow up to improve upon the 70%

US 6,619,641 B2

TOPCODER SOFTWARE CHALLENGE OUTCOMES

NASA TOURNAMENT LAB: PLANETARY "BIG DATA"

- Planetary Data Systems (PDS) captures data from all space vehicles – Orbiters, Landers, Rovers
- •Make Planetary Data Systems (PDS) information more accessible and interesting to the public
- Leverage competitive ideation process for generating new concepts
- Leverage **competitive software development** contests for building new ideas
- Architecture contests for data reorganization to achieve accessibility
- "Mashup" Development contests to create compelling mobile and consumer applications to showcase data capabilities.

PDS MASHUP: DIRECTED INNOVATION

Open "Mash-up" Development Contest -

Required to use API built in previous challenges. Permitted to use other sources too.

\$10,000 Prize, 2 weeks

#1 requirement was "Joy to Use"

Catered to Android & iPhone

PDS: ALSO FURTHERING STEM GOALS

Facebook presence.

NASA TOURNAMENT LAB: PORTABLE/MOBILE EKG APP

- Create a mobile, Android-based 12lead ECG data viewer
- Advance cheap, mobile medical applications
- Implications for both space medicine and for third-world countries
- Leverage grade school education programs for complex interface design
- Utilize range of competition types for full application build

DARPA INSPIRE PROGRAM: ZERO ROBOTICS

- •Spherical satellites move with independent control of all six degrees of freedom in zero gravity (inside the international space station)

 ZER®
 R®B©TICS
- •These "spheres" travel within a defined area to complete tasks in a game scenario developed by researchers at MIT
- •High School students compete against one another to earn the most points using a high-level language environment
- •Virtual zero-gravity and visual simulation is used to allow online competition before the finals are executed on the space station
- •Zero Robotics infrastructure and web site was build by TopCoder

